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A porous-wavemaker theory 
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A porous-wavemaker theory is developed to  analyse small-amplitude surface waves 
on water of finite depth, produced by horizontal oscillations of a porous vertical plate. 
Analytical solutions in closed forms are obtained for the surface-wave profile, the 
hydrodynamic-pressure distribution and the total force on the wavemaker. The 
influence of the wave-effect parameter C and the porous-effect parameter G, both 
being dimensionless, on the surface waves and on the hydrodynamic pressures is 
discussed in detail. 

1. Introduction 
Surface waves forced by a wavemaker were treated by the classical wavemaker 

theory developed by Havelock (1929), Biesel & Suquet (1951) and Ursell, Dean & 
Yu (1960). In  this classical wavemaker theory, the wavemaker was represented by 
a vertical impermeable plate which oscillates horizontally with a small displacement, 
and the amplitude of the forced surface waves was assumed to  be small. 

For small-amplitude surface waves produced by a moving vertical plate starting 
from rest, Kennard (1949) presented a linear wave theory based on the Fourier 
integral method. Adopting Kennard’s solution, Madsen (1970) analysed the particular 
problem of a sinusoidally moving piston-type wavemaker starting from rest. Recently, 
Chwang (1983) presented a nonlinear theory to analyse the impulsive motion of a 
vertical plate. Using the method of small-time expansions, Chwang was able to  obtain 
analytical solutions up to  and including the third-order velocity potential. The 
free-surface profile of the fluid was also determined analytically. 

The effect of finite inclination angle of a wavemaker on the surface waves was 
studied by Raichlen & Lee (1978). They investigated numerically and experimentally 
the linear surface waves produced by an inclined-plate wave generator which is hinged 
a t  the bottom. They found that, for a given stroke and depth-to-wavelength ratio, 
very small waves were produced; for other wave periods for the same conditions 
significantly larger waves were generated. 

The influence of leakage around the wavemaker on the wave amplitude was 
analysed by Madsen (1970). He found that the leakage effect was large in reducing 
the wave amplitude. The purpose of the present paper is to  analyse the porous effect 
of a wavemaker on the free-surface waves. This porous-wavemaker theory may have 
important applications in the study of surface waves in reservoirs or lakes caused by 
landslides during earthquakes. Water waves are generated by landslides which may 
occur either vertically, inclined at an angle, or horizontally over a portion of their 
travel. Noda (1970) has modelled a vertical landslide by a two-dimensional box which 
falls to the bottom a t  the end of a semi-infinite channel. He also modelled a horizontal 
landslide by a two-dimensional wall which moves into the fluid domain. I n  both of 
his models, the box and the wall are impermeable. When the bulk mass in a landslide 
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consists of rocks and soils, a porous box or wall would be more appropriate. Thus 
the results of the present paper could lead to a better analysis of landslide-generated 
surface waves. Another possible application of the present analysis is in situations 
where efficiency of generation of waves is of main interest, with the wavemaker being 
subjected to some form of structural constraint on the maximum allowable force. A 
porous wavemaker may be helpful in reducing the total load which is accompanied 
by a reduction of wave amplitude as the porous-effect parameter G (defined in (23b)) 
increases. 

The general problem of surface waves on water of finite depth, produced by 
horizontal oscillations of a porous vertical plate, is formulated in 52. The boundary 
condition on the surface of the porous wavemaker is derived based on Taylor’s (1956) 
assumption that the velocity perpendicular to  the porous plate is linearly proportional 
to the difference in pressure between the two sides of the wavemaker. The 
hydrodynamic-pressure distribution and the total force on the wavemaker, and the 
surface-wave profile have been obtained analytically in $ 3. Finally, the numerical 
results are presented and discussed in $4. 

2. Formulation of the problem 
Let us consider a porous piston-type wavemaker. The mean position of the 

wavemaker is at the x = 0 plane (see figure 1 ) .  It oscillates horizontally along the x-axis 
with a displacement so : 

where w is the circular frequency, d the maximum amplitude of oscillation, which is 
assumed to be small in comparison with the undisturbed fluid depth h. The y-axis 
points vertically upwards, with the plane y = 0 being the bottom. The horizontal 
velocity and acceleration of the wavemaker are 

so = deiwt (d + h) ,  (1) 

u,, = iwd e i w t ,  a, = - W2d eiut (2) 

respectively. Owing to the oscillation of the wavemaker, small-amplitude surface 
waves are produced which propagate away from the wavemaker. The disturbed free 
surface is a t  y = h+q(x,  t ) ,  where 11 is much smaller than h. 

We shall assume the fluid to be incompressible and inviscid, and its motion 
irrotational. Therefore the velocity potential @(x, y, t )  satisfies the Laplace equation 

v2Qj = 0. (3) 

0, = St (Y = h ) ,  (4) 

q + g q  = 0 (y = h)  (5) 

The linearized kinematic condition and dynamic condition on the free surface are 

respectively, where Qj, denotes a@/ay etc. Combining (4) and (5) ,  we have the 
linearized free-surface condition for @ : 

Qjtt  + gQj, = 0 (y = h).  (6) 

Qj, = 0 (y = 0). (7) 

At the bottom y = 0, the vertical velocity of the fluid must vanish. Hence 

I n  the linear theory, the hydrodynamic pressure P(x, y, t )  is related to the velocity 
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FIGURE 1. Schematic diagram of a porous wavemaker. 

potential Qi by the Bernoulli equation as 

P = -pQit ,  (8) 

where p is the constant density of the fluid. Owing to the linearity of the problem 
and the antisymmetry of the wavemaker motion, the hydrodynamic pressure on the 
positive side of the wavemaker surface, P ( y ,  t ) ,  is related to that on the negative side 
of the plate, F ( y ,  t ) ,  by 

P(0, y, t )  = w y ,  t )  = -p-(y,  0. (9) 

We shall assume that the porous wavemaker is made of material with very fine pores. 
The normal velocity of the fluid passing through the porous plate is thus linearly 
proportional to the pressure difference between the two sides of the wavemaker 
(Taylor 1956) : 

(10) 
b 2b 

Y Y 

where ,u is the dynamic viscosity and b is a coefficient which has the dimension of 
a length. 

In the present paper, we shall analyse the waves on the positive side of the 
wavemaker (z > 0). Waves generated to the left of the wavemaker can be analysed 
similarly. The boundary condition on the wavemaker surface is 

W(y,t)  = -(pt-P) = - P ( O , y , t ) ,  

Qi, = ug- w (z = O ) ,  (11) 

where uo and W are given by (2) and (10) respectively. It should be noted that, if the 
porous flow through the wavemaker is significant, Taylor’s assumption (10) and the 
boundary condition (1 1) may not be accurate enough. Hence, we should confine our 
analysis to porous wavemakers with fine pores. 

3. Pressure force and surface-wave profile 
Based on the periodic motion of the wavemaker, we assume that the velocity 

potential, the hydrodynamic pressure and the normal velocity in the porous plate 
are all periodic functions in t and have a time factor exp (iwt) : 

Qi = $(x, y) eiwt, P = p ( z ,  y) eiot, W = w(y)  eiwt. (12) 
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By (3) and (12), 9(x, y) also satisfies the Laplace equation 

The solution of (13), satisfying the boundary conditions (6) and (7), which 
corresponds to an outgoing wave in the region x > 0, can be obtained by the method 
of separation of variables as 

a, 

9 = A, cosh k, y e-ikox + I: A, cos k, y ecknX, (14) 
n-1 

where k, satisfies the relation 
l-Ck,htanhk,h=O, 

l+Ck,htank,h=O ( n =  1 , 2 , 3  ,... ), k, are the roots of 

and C is a wave-effect parameter (Chwang 1981) defined by 

C = L  w2h ' (154 

A, and A, (n = 1,2 ,3 , .  ..) in (14) are arbitrary constants. We note that (15a, c) give 
the usual dispersion relation for surface waves in a fluid of constant depth h:  

w2 = gk, tanh h,h. 

iwd- w(y) = -%,A, cosh k,y- C k, A ,  cos k, y. 

(16) 

(17) 
00 

By ( 2 ) ,  (ll),  (12) and (la), we have 

n-i 

Since the eigenfunctions cosh k,y and cos k,y (n = 1,2 ,3 ,  .. .) are orthogonal over the 
interval from y = 0 to y = h, we obtain the constants A ,  and A, as 

where 
P,=sinhk,h, P,=sink,h ( n =  1 , 2 , 3  ,... ). 

On the other hand, (10) together with (8 ) ,  (12) and (14) give 
00 

pw(y) = -2iwbp(A,coshk,y+ E A,cosk,y). 
n-1 

Again, based on the orthogonality of the eigenfunctions, we have from (20) 
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where 
G - A G ,  k G , = - G  kl ( n = 1 , 2 , 3  ,... ), 

k0 kn 
0 -  

2pwb G = - .  
rukl 

Therefore the coefficients A,  and A ,  can be expressed explicitly as 

2wdP0 
kih(1 +Cp",) ( l + G o ) '  

A ,  = - 

2wdP, A , = -  (n= 1 , 2 , 3  ,... ), 
k i  h( 1 - CP,) (G, - i) 

The hydrodynamic-pressure distribution on the wavemaker surface, normalized 
with respect to ph( - w Z d ) ,  is (taking the real part only) 

p(o, ' 3  t ,  = C ,  cos ot + C ,  sin ot, 
- pw2dh 

where the in-phase (with respect to the horizontal displacement of the wavemaker) 
pressure coefficient C, is given by (8), (12), (14) and (24) as 

2P, cos k ,  y m 

c,= z 
,-I k2, h2( 1 - CP,) (1 + G i )  ' 

and the out-of-phase pressure coefficient C, is given by 

( 2 5 4  
2 P, cos k, y +; 2P, cosh koy  c, = 

kihZ( l  +Cp",) ( 1  +Go) ,=I k2,h2(1 -CP,) (G, +Gil) ' 

Alternatively, the dimensionless pressure distribution on the wavemaker surface may 
be expressed as 

C, cos wt + C, sin wt = D, cos (wt - O,), (26a)  

C where 
D, = ( C i + C i ) i ,  8, = tan- 'A. 

CP 
The total hydrodynamic pressure force on the wavemaker, normalized with respect 

to ph2( - w2d) ,  is obtained by integrating (25) with respect to y from y = 0 to y = h ,  

where C 
CF cos o t  + CL sin wt = DF cos (wt - S,), 127 a)  

(27 b )  DF = (C$+CE)f,  8, = tanp1 4, 
CF 

w, m 2p", 
"= k~h3(1+Cp",)(1+Go)+~,k;h3(1-C~)(Gn+G;1)~ 

The free-surface elevation measured from the undisturbed level at y = h, q ( x ,  t ) ,  is 
obtained from ( 5 ) ,  (12), (14)  and (24) by taking the real part only. Thus 

00 

= Eo sin (k ,x-wt)  + z (En cos wt + F, sin wt)  e-knx, (28a) d n-1 
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where 

DP 
FIQURE 2. The hydrodynamic pressure distribution on the wavemaker surface 

for various values of G at C = 0. 

2 G  
ko h(1 + CG) ( 1  + Go) ' 

Eo = 

( n =  1 , 2 , 3  ,... ), 2 p n  
k ,h( l  -CP,) (1 +Gi) 

En = 

F, = 2% ( n =  1 , 2 , 3  ,... ). 
k , h ( l - C P , )  (G,+G,') 

The first term in (28a) represents a progressive wave propagating away from the 
wavemaker along the positive x-direction. The second term in ( 2 8 a )  corresponds to 
the sum of non-propagating waves whose amplitudes decay exponentially as x 
increases. 

4. Results and discussion 
The dimensionless pressure coefficient D, defined by (26) and (25)  is plotted in figure 

2 versus the vertical distance y / h  a t  C = 0 for several different values of CT. The 
wave-effect parameter C defined by ( 1 5 4  is a direct measure of the ratio of the gravity 
effect to the inertial effect due to oscillation of the wavemaker. A small value of C 
means that the gravity effect is negligible. C = 0 indicates no surface waves. On the 
other hand, for large values of C, the surface gravity waves become important. The 
parameter G defined in (23)  may be viewed as a Reynolds number for the flow passing 
through the  fine pores of the porous wavemaker. It is also a measure of the porous 
effect. G =  0 means that the wavemaker is impermeable. On the other hand, as G 
approaches infinity, the wavemaker is completely permeable to fluid; that is, there 
would be no wavemaker at all. I n  figure 3, the phase angle 8, for the pressure 
distribution on the wavemaker surface, defined in (26) ,  is plotted versus the vertical 
distance y/h a t  C = 0 for several different values of G. We note from figures 2 and 
3 that both D, and 8, increase as the height y / h  decreases for fixed values of G .  They 
reach maximum values at the bottom y = 0. At a fixed height of y / h ,  D, decreases 
while OP increases as G increases. A t  G = 0, the wavemaker becomes impermeable, 
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OP 

FIGURE 3. The phase angle of pressure distribution for various values of G at C = 0. 

FIGURE 4. The hydrodynamic-pressure distribution on the wavemaker surface 
for various values of G at C = 0.2. 

8, reduces to zero. It means that the hydrodynamic pressure is in phase with the 
displacement of the wavemaker. Also, D, tends to the maximum distribution a t  
G = 0, which agrees exactly with that for a vertical plate (Chwang 1978) and in a 
fluid of constant density (Chwang 1981). As G approaches infinity, the wavemaker 
becomes completely permeable to fluid, or it disappears functionally such that D, 
reduces to zero as shown in figure 2. 

The surface-wave effect on the hydrodynamic pressure distribution is shown in 
figures 4 and 5, in which the dimensionless pressure coefficient D, and the phase angle 
8, are plotted respectively versus the vertical distance y l h  a t  C = 0.2 for various 
values of the porous-effect parameter G. We note from these two figures that D, and 
8, are no longer monotonic functions of y l h  for fixed values of G.  D,  decreases initially 
as y l h  increases from zero, similar to the case of C = 0. It then increases as y / h  further 
increases close to the free surface because of the presence of surface waves there. We 
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BP 

FIGURE 5.  The phase angle of pressure distribution for various values of G a t  C = 0.2. 
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FIQURE 6. The in-phase force coefficient C,, the out-of-phase force coefficient C,, and the total force 
coefficient D, versus the wave-effect parameter C a t  G = 0. 

should note that the free surface is no longer a t  y = h but h + q ( z ,  t ) .  Hence the 
pressure coefficient D, does not vanish a t  y = h - it takes a value corresponding to 
the hydrostatic pressure due to the wave height 7. For an impermeable wavemaker 
(G = 0) the value of D, at the bottom y = 0 is smaller than that for G = 0, and the 
phase angle 0, is very close to zero near the bottom a t  C = 0.2. Or, increases with an 
increase in height. As y/h approaches unity, 0, exceeds owing to the presence of 
surface waves. 

For an impermeable wavemaker (G = 0), the in-phase force coefficient CF,  the 
out-of-phase force coefficient CL, and the total force coefficient DF are shown in figure 
6 as functions of the wave-effect parameter C as computed from equations (27c, d,  b)  
respectively. We note from figure 6 that ,  a t  C = 0, C, vanishes while C ,  has its 
maximum value of 0.543, which is precisely the value given by Westergaard (1933) 
and by Chwang (1981) when the surface waves are absent. As the value of C increases, 
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FIGURE 7 .  The phase angle of total force versus the wave-effect parameter 
C for various values of G. 
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FIGURE 8. The total force coefficient versus the wave-effect parameter C at several 
values of the porous-effect parameter G. 

different 

CF decreases monotonically while C,  increases monotonically. However, the total 
force coefficient DF decreases at  first until it reaches a minimum value around C = 0.3, 
then i t  starts increasing as the wave-effect parameter C becomes large. At  large values 
of C ,  the total force is mainly due to its out-of-phase component resulting from surface 
waves. This can also be shown by figure 7, in which the phase angle 8, defined by 
(27b)  is plotted versus C for several different values of G. We note from figure 7 that 
8 ,  tends to 

The effect of porosity on the total force is shown in figure 8, in which the total force 
coefficient DF is plotted against the wave-effect parameter C for fixed values of the 
porous-effect parameter G from G = 0 to G = CO. It can be seen clearly from figure 
8 that, for fixed C ,  DF decreases as G increases. When the wavemaker becomes 
completely 'transparent' to the fluid (G-tm) the total force on the wavemaker 
reduces to zero, as it should be, based on physical intuition. 

for large values of C regardless of the values of G. 
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FIGURE 9. Surface-wave profile for different values of G at C = 0.2, wt = 0. 
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FIGURE 10. Surface-wave profile for different values of C at G = 0, wt = 0. 

The free-surface wave profile as calculated by (28) is shown in figure 9 for C = 0.2 
at wt = 0. We note from figure 9 that the surface waves produced by an impermeable 
wavemaker (G = 0) have the maximum amplitudes. As G increases, the wave 
amplitude v / d  decreases, since the wavemaker becomes more porous. For a fixed value 
of G, the first wave has a larger amplitude than those of subsequent waves because 
of the contribution from non-propagating waves represented by the second term in 
(28a). As x increases, this contribution decreases exponentially; hence the wave 
amplitude approaches a constant for given values of C and G. For an impermeable 
wavemaker, figure 10 shows that, as C increases from 0.2 to 0.4, the wave amplitude 
decreases slightly while the wavelength almost doubles. I n  the absence of surface 
waves (C = 0), figure 10 shows that the fluid simply piles up in front of the 
' wavemaker ' plate. 

The important output curve of a porous wavemaker is presented in figure 11,  in 
which the wave amplitude a t  infinity E,,, as computed from (28b) ,  is plotted against 
the wave-effect parameter C for various fixed values of the porous-effect parameter 
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FIQURE 1 1 .  Output wave amplitude at  infinity versus the wave-effect parameter C 
for various fixed values of G. 

G. We note from figure 11 that, for any fixed values of C, E, decreases as G increases. 
E, attains maximum values for an impermeable wavemaker (G = 0). On the other 
hand, Eo reduces to zero if the wavemaker is completely ‘transparent’. For fixed 
values of G, E, decreases as C increases. In the limit as C approaches zero, E, tends 
to a limiting value of 2 for any arbitrary, finite values of G. However, as C becomes 
very small, the eigenvalue k,  becomes very large according to (15a); thus the 
travelling wave at infinity, which is represented by the first term in (28a) ,  has a very 
short wavelength or oscillates very fast as it should do according to (15c). In  the limit 
when the wave-effect parameter C is identically zero, there will be no surface gravity 
waves. 
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